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Abstract--In this article we present the mathematical model leading to the equations of the thermo- 
viscoelastic coupling for large deformations. We have chosen a Poynting-Thomson model to describe 
the rheological behavior of the material. In this model the source term generated by viscous frictions is 
independent of temperature. The two-dimensional heat transfer equation in Lagrangian form is solved via 
a finite element method for a two-layer elastomer-metal test piece under a shear force. The results of the 
numerical model are compared with experimental results which show that the source term cannot be 
temperature independent. For a more accurate description of the real behavior of the material the source 
term is then identified from experimental results via an inverse method. The numerical results agree well 

with the experimental ones. Copyright © t996 Elsevier Science Ltd. 

INTRODUCTION 

Many industrial sectors, for example the automobile 
and aeronautic industries, use elastomers. In many 
cases they are used for pieces strictly linked to safety 
and are submitted to strong mechanical and thermal 
forces. However,  the mechanical properties of  elas- 
tomers strongly depend on temperature and when 
these materials are brought  to low temperatures, their 
mechanical properties are perturbed by the onset of  a 
glass transition which causes their stiffness to increase 
dramatically. This stiffness is accompanied by an 
internal heat dissipation occurring because of  the 
increase in viscosity around the glass transition. The 
resulting heating alters the mechanical behavior of  the 
elastomer and generates a new modification of  the 
dissipation. Also, the absence of  cooling may cause 
the appearance of  hot  points causing damage to the 
material. It is therefore necessary to know the thermo- 
mechanical behavior of  these elastomers in order to 
predict the load limit and lifetime of  these pieces. 

Among  the behavior aspects to be considered we 
can quote : 

• hyperelasticity applied in quasi-state loading ; 
e thermo-viscoelasticity coupling to study the 

fatigue behavior for cyclic loading with large 
deformations. 

Hyperelasticity has been the topic of  several works. 
In contrast, less work has been conducted on visco- 
elasticity under large deformations. Among  the cur- 
rently used approaches for elastomers the statistical 
approach should be mentioned. It describes the 
material behavior from the behavior of  molecular 
chains, i.e. their orientations, movements  and con- 
straints [1]. The microscopical numerical modelling is 
then tricky [2]. Another  approach is the phenom- 
enological approach which is based on experimental 
observations to model the internal energy and the 
material behaviour law. Several authors have pro- 
posed viscoelastic behaviour laws for finite defor- 
mations (up to about  100% deformation).  Among  
these laws are integral behaviour laws which describe 
the constraints through a function of  the deformation 
tensor at time t and a 'memory of  deformations '  tensor 
which accounts for the contributions of  previous times 

[31. 
As far as thermo-viscoelasticity is concerned, most 

works deal with the study of  heating within structures 
submitted to plane harmonic deformations. These 
deformations are weak enough to describe the 
material behaviour through complex characteristics 
with respect to temperature and frequency [4-7]. 
Other works have been carried out in the same way 
to obtain the deformation and temperature field of  
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NOMENCLATURE 

A(X, t) Almansi.  Euler deformation ( 'o f  (7, 
tensor s(X °, t) 

C(X °, t) right Cauchy Green tensor S(X °, t) 
Cp heat capacity T(X, t) 
fl(X, t) tensor of deformation rates U 
E(X °,t) Green Lagrange deformation 

tensor X 
e(X, t) internal energy X' 
./ frequency 
F'(X °,t) gradient tensor 
I~(T) conductivity tensor 
R(X, t) density of the heat flux 
r(X, t) production rate of energy 
Col  F det r' r 

det C, C, 
entropy 
second Piola-Kirchoff stress tensor 
temperature 
derivative according to time of 
position vector 
position vector of point X 
initial position vector of point X. 

Greek symbols 
5. conductivity 
f l(X' ,  t) first Piola-Kirchoff stress tensor 
p(X, t) density 
E(X, t) Cauchy stress tensor. 

materials submitted to mechanical and thermal Ioad- 
ings, but for small deformations [8,9]. 

We are using here an approach which generalizes 
a simple rheological model (Poynting--Thomson) to 
large deformations [10,11], so that the results can be 
applied to a larger number of cases. 

From the basic relations of the mechanics of a con- 
tinuous media, we present an approach to obtain the 
equations governing the viscoelastic behaviour and in 
particular the energy equation for large deformations. 
In the latter, a source term appears which depends on 
the physical parameters characterizing the mechanical 
behaviour of the body and which represents the quan- 
tity of energy dissipated by internal dumping. Con- 
t inuum equations for the finite element simulation 
are written in Lagrangian form utilizing the initial 
configuration as the reference state. 

In this article, we first briefly describe the mech- 
anical problem for large deformations. From the basic 
principle of thermodynamics of continuous media, we 
then present the mathematical model which enables 
us to obtain the equations governing the thermo- 
viscoelastic behaviour. Finally, we focus on the energy 
equation and solve it via a finite element method. 
Our approach is validated by treating a two-layer 
elastomer-metal test piece being sheared. As this 
mechanical problem has an analytical solution, it pro- 
vides a good benchmark problem. 

1. DESCRIPTION OF THE MECHANICAL 
PROBLEM 

1.1. Description of  the kinematics 
Because of their low modulus of elasticity and of 

their viscous properties, rubber elastomers are used 
more and more to manufacture articulated or damp- 
ing pieces. These pieces may be subjected to very 
strong mechanical loadings (traction, shearing, 
torsion, deflection.. .)  generating large deformations 
of the elastomer. The theory of small deformations is 

not appropriate for the description of the behaviour 
of these materials. It is therefore necessary to dis- 
tinguish an initial or reference configuration from the 
deformed or present configuration, which is unnecess- 
ary in small deformations (Fig. 1). 

We use a Lagrangian description of the movement. 
in finite element modelling, the mesh deforms itself in 
time when the thermo-viscoelastic coupling is solved 
in the deformed configuration. Therefore, we have 
opted for the reference configuration to avoid any.' 
remeshing or element degeneration problems. 

At each time the movement is thus defined in a 
Cartesian coordinate system by three equations such 
a s . v ,  . v i (x 'L  " 0 i =  = x2, x3, t), 1,2,3, where (&._v, .v0 rep- 
resent the coordinates of point X in the current con- 
figuration and (x ° , x2°, .v3°) the coordinates of the same 
point X in the reference configuration. We will denote 
by X the position vector of the point in the current 
configuration and X ° the position vector of the point 
in the reference configuration. The local behaviour of 
the media during the movement is characterized by the 
tangent linear mapping, or gradient tensor, ~(,~o t), 
whose components are defined by 

t~x, 
F ~ /  = - -  

('~ X ' I, 

This tensor is used to obtain the appropriate trans- 
formation relations for the length, surface and volume 
elements between the two configurations [12-14] 

dX = p(~0, t) dX ° (la) 

N(X, t) dS = det F(X °, t)F T(X°, t)N°(X °, t) dS ° 

(lb) 

dV = det F(X °,t)  dV °. (Ic) 

DeJbrmations. From tensor F(X °, t), it is possible 
to define two deformation tensors [12], the Green-  
Lagrange deformation tensor E(X °, t) in the reference 
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Fig. 1. Initial configurations and deformed configuration. 

configuration and the Almansi-Euler deformation 
tensor ~,(X °, t) in the deformed configuration 

~ x  ° , t) = ½(~T(x°,  t ) P ( x  °, t) - i )  

and A(X, t) = ½(i-  (F(X °, t)FT(X °, t)) 1). 

We also introduce the dilatation tensor or right 
Cauchy-Green tensor, defined by 

C(X 0, t) = FT(x0, t)F(X 0, t). 

Deformation velocity. In order to characterize vel- 
ocities, we introduce the vector U, time derivative of 
the position vector X(X°,t), in the current con- 
figuration 

dX 
U = { ~ - } =  ~(X°, t){dX ° } = [,(X, t){dX) 

with: IE(X, t) = ~(X °, t )F - '  (X °, t). 

By utilizing the relationship ( d X ) { d Y } - ( d X  °) 
{dY °} = 2 (dX°)E(X °, t){dY °} we obtain 

• ((dX){dY}) = 2(dX°)l~(X °, t){dV°}. 

However, this expression can also be obtained as 
follows : 

d ( (dX)  {dY}) = t) <dX)(rff(X, 

+ [~(X, t)) {dY} = 2(dX)I) (X,  t) {dY}. 

The tensor of  deformation rates, I~(X, t), can also be 
expressed by the symmetric part of  tensor r~(x, t). The 
deformation velocity, which has been expressed in 
terms of  fi(X, t) in the deformed configuration, is 
expressed in terms of  g(X °, t) in the reference con- 
figuration. Both tensors are related by 

£ ( x  °, t) = ~T(x°, 0 f f (x ,  t)i~(x °, t). 

1.2. Description of stress 
In the deformed configuration, the constraint state 

is described by Cauchy stress tensor, ~,(X, t), which 
produces stress vector T(X, t) acting on a surface 
element with normal N(X, t). The local contact force 
is then 

dt(X, t) = T(X, t) dS = ~(X, t)N(X, t) dS. 

Using equation (lb) it can be written as 

dt(X, t) = det F(X °, t)~(X, t)F T(X0, t)N°(X °, t) dS ° 

= fI(X °, t)N° (X °, t) dS °, 

where fl(X °, t) is the first Piola-Kirchoff stress tensor. 
This tensor expresses at time t the contact force 
exerted on a surface element of  the initial configur- 
ation. Lastly, the description of the local contact force 
related to the reference configuration is 

dt°(X °, t) = P l(X°, t)N(X °, t)N°(X °, t) dS ° 

= g (x  °, t)N° (X °, t) dS ° 

since: dt °(X °, t) = F 1 (X o, t) dt(X, t). 

Here the symmetric tensor S(X °, t) is the second Piola- 
Kirchoff stress tensor. The relationship between the 
three tensors is given by 

det F(X °, t)~(X, t) = f l (X °, t)FT(X °, t) 

= F(X °, t)S(X °, t)FT(X °, t). (2) 

1.3. Equations of the mechanical problem 
Equation of mass conservation. With the aid of equa- 

tion (1) the mass in an elemental volume is 

p°(X°, t) dV ° = p(X, t) dV = p(X, t) det F(X °, t) dV °, 
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where p°(X(), 0 represents the local density in the initial 
configuration and p(X,t)  the local density in the 
deformed configuration. In the mechanical study of 
elastomers, the incompressibility assumption has gen- 
erally been used successfully. This assumption 
expresses p°(X°, t) = p(X, t), that is 

d V = l>[(X°:.t)_ = det F'(X". I) = 1. (3) 
d V ° /)(X. t) 

Conservation ~?/momentum. If f(X, l) is a force per 
unit volume describing the action of distant forces 
and T(X, t) is the stress vector, the conservation of 
momentum in the present configuration is 

d-- fr p(X.t)U,(X.t)dV .i T,(X,t)dS 
dt >u) I)(,) 

= i / (X, t )dV.  
)(/) 

where U<(X, t) represents the components  of the vel- 
ocity field U(X, t) in the domain D(t). By using the 
previous relations and assuming incompressibility, we 
obtain the Lagrangian form of this equation in the 
reference configuration 

d f~ po (X o, t) U,(X '), t) d V" 
d t  )o 

I o o o - H,~(X ,t)N~(X , t)  dS '> 
Dc~ 

=!i 
to which corresponds the following local form : 

~ U~(X °, 0 
po (X, t) ~t - H,~.k (X °, t)+.L(X", t). 

2. THERMO-VISCOELASIC ASPECTS OF THE 
COUPLING 

2.1. Consereation o/ener,qy 
The equation of conservation of energy usually 

written in Eulerian variables in the current con- 
figuration is 

d 
fD p(X, t)e(X,t) d V 

dt (,) 

? 
J,u) (r(X, t) + £(X, t): I)(X, t)) d V 

f <q(X, t)> {N(X, t)} dS. 
"D(/) 

where e(X, t) represents the internal energy, r(X, t) the 
production rate of energy supplied from outside and 
q(X, t) the heat flux by conduction. The latter is related 
to temperature by Fourier  law 

q ( X ,  t) = - K ( T ) g r a d (  T(X,  t ) ) ,  

where K(T) is the thermal conductivity tensor of the 
material, and £(X, t ) : i ) (X,  t) describes the internal 
production of energy resulting from the viscous fric- 
tion. By using the previous relations and assuming 
incompressibility, this equation becomes 

di ji,,, t¢' (X°, t)e(X", t) d V') 

= fl~,,( r(X'''t)+~(X'''t)d~(X°'t!)dV''" dt J 

- f , , , ,  <q(X, t ) > F  +(X °, t){N°(X ", t)} dS".  

Defining the heat flux in the reference configuration 
by 

Q(X", t )  ~" "X" 1 = ~ , )q(X,t). 

The conservation of energy equations in this con- 
{iguration finally is 

~i ji, ,, t, ') ( X" , Oe( X", O d W ' 

= ~ r(X ~', t )+S(X t', t )  dt J 

f>,, (Q(X °, t ) ){N°(X °, t)} dS". 

The corresponding local equation is then 

de(X", l) 
t)~' (X ° , t) dt 

dF,(X", i) _ div(Q(X", t)). (4) r(X °, t) +S(X" ,  t) : d ~  

2.2. Dissipation 
Second principle q[ thermodynamics and (Tausius 

Duhem inequality. The second principle of thermo- 
dynamics expresses the evolution of entropy s(X °, t) 
in the reference configuration as 

,~ I, .ds(X I' t) ( r(X °,t) dV '/ t) (X ,t) z ~> 
dt Jl~,, T(X °, t) 

j " (Q(X o , t ) ) ~ r o t x  "° ,~) 
_ t "  ~ ' -  , ' ~ J  d S ( , .  

,-~¢, T(X °, t) 

Expressing r(X °, t) from equation (4) and using the 
relationship between free energy and internal energy 
(e = u? + Ts) leads to the Clausius-Duhem inequality. 
This inequality demonstrates that energy dissipation 
(k(X °, t) is positive or null 
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4,(x °, t) = f i ( x  °, t): F(X °, t ) -  p°(X°, t) 

, dT(X °, t)'~ 'dV(X °, t) +s(XO, t ) ~ )  
x dt 

_ ( Q ( X  °, t)> {grad(T(X °, t))} >~ O. 
T(X °, t) 

This dissipation is usually composed of an intrinsic 
dissipation ~bi.,(X °, t) resulting from mechanical irre- 
versibilities and a thermal dissipation ~bth(X °, t) result- 
ing from conductive heat transfer [12-16] 

4,~., (x °, t) = f i (x  °, t): ~(x °, t ) -  p°(x°, t) 

×(dud(X °,t) . --o -dT(  X° t)'~ _ 
t) o (5) 

\ dt 

~th(X °, t) = (Q(X °, t)){grad(T(X °, t))} /> 0. 
T(X °, t) 

When assuming a decoupling of thermal and mech- 
anical dissipative phenomena, both forms of dis- 
sipation must remain independently positive or null 
to satisfy the Clausius-Duhem inequality. 

Intrinsic dissipation. The purpose here is to identify 
a rheological model in order to obtain a charac- 
terization of the dissipation process. This model must 
allow for the choice of: 

• independent thermodynamic variables ; 
• a thermodynamic potential ~h(X °, t) ; 
• a dissipation potential ~o(X °, t). 

For its admissibility the process must satisfy the 
previous inequalities [12, 15, 16]. Both potentials are 
expressed in terms of the independent variables. 

To describe the thermo-viscoelastic behaviour, we 
assume there is an intermediate state which considers 
a multiplicative decomposition into an elastic and a 
nonelastic deformation. This approach, which is com- 
mon in plasticity, has been used by many authors to 
set viscoelastic behaviour laws for large deformations 
[15-18]. We thus define a pseudo gradient of elastic 
deformation P~(X °, t) and a pseudo gradient of visco- 
elastic deformation Fv(X °, t) such that 

r ( x  °, 0 = ~ ( x  °, t ) L ( x  °, t). 

A viscoelastic dilatation tensor ~v(X °, t) is associated 
with the pseudo gradient of viscoelastic deformation. 
This tensor is defined by 

C ( x  °, t) = L+(x °, t )L (x  °, t). 

Temperature T(X °, t), the gradient tensor ~(X ° t) and 
the viscoelastic dilatation tensor C~(X °, t) then con- 
stitute a coherent choice for independent variables. 

Furthermore, the potential for dissipation only 
depends on variables characterizing dissipation 
phenomena. The thermodynamic potential and the 
potential of dissipation are then given by 

~(X °, t) = ~h(T,t, Cv) and ~p(X °, t) = ~o(~v, T). 

Global incompressibility (detP = Jv = 1) and local 
incompressibility ( d e t C v = J v =  l) are taken into 
account through Lagrangian multipliers p and q. This 
leads us to replace the potential ~(T,I~,Cv) in the 
dissipation [equation (5)] with 

~(T, C, Cv) = ~(T, C, Cv) +P(Jv - 1) + q(Jv - 1) 

given 

c3~h (T, I~, I~v) 
~ . , ( x  °, t) = f i ( x  °, t) - p  ~ c ( x  °, t) 

CofF(X °, t)): F(X °, t) ~ p  

{ a~(T,~,Cv) 

+ q Cof (ST (X °, t)): ~v(X °, t) 

--P( s(X°'t)+d~-(T'e'~-v)]Tp(X°OT(X °, t) / , t). 

(6) 

However, under the definition of intrinsic dissipation 
in terms of the potential of dissipation [14] we also 
have 

(~int(X O, t) = ~D(¢v) : tv (X O, t) ~ 0, 
e ~ ( X  °, ,) 

(7) 

where the potential of dissipation is deduced from the 
rheological model such that the intrinsic dissipation 
remains positive or null. The latter leads to the three 
following relations describing the thermo-viscoelastic 
behaviour : 

t3~h(T, I~, (2v) 
I=I(X °, t) = p + p  Cofi~(X °, t) (8) 

~f:(X °, t) 

s(X °, t) + ~J (c ,  c,.) T - 0 (9) 

~ ( r ,  t ,  C )  ~o(~v) 
p + . +qCofl~v(X °, t) = 0. 

(10) 
Thermal dissipation. To describe the thermal dis- 

sipation, we use Fourier law in the reference con- 
figuration written as 

Q(X °, t) = - K L  (X °, t)gradT(X °, t) 

with: ~L(X °, t) = 1~-J (X °, t)I~(T)p-T(X °, t), 

where KL(X°,t) is the Lagrangian thermal con- 
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ductivity tensor in the reference configuration. The 
thermal dissipation always remains positive or null if 

~bth (X", t) = gradT(X °, t)g,,(X °, t)gradT(X °, t) ~> 0. 

2.3. Energy equation 
Using the relationship (e = ' P + / s ) ,  the time 

derivative of internal energy can be wrinen as 

de , ? ¢ ( T , C  C , ) d T  ?)p(T,C,C,) 

dt = - - d f  d t +  (?~ --  

dC {~b(T, I~, C, ) d C ,  Tds (T .C ,C , )  dT 
- -  ' +'" d ;  dt + ?C, d l +  di 

When substituting the above expression into the con- 
servation of energy equation (4) and when using 
relations (8) and (9), we obtain if the terms are related 
to incompressibility are neglected 

d s ( T , C , C , )  +p}"~(T,C:C,).___ - - - - -  
P t  dt /~C, 

dC,. _ r ( X , , , t ) + d i v Q ( X  o 7') 0, (11) 
dt 

In addition, entropy s(T, C, C,) also depends on T,{ ~ 
and C, according to equation (9), and consequently 
we have 

ds(T ,C,C, )  ? s ( T , C , C , ) d T  

dt ~T dt 

?T~C dt f 'TgC, dt 

By placing the above expression in equation ( 11 ), then 
using equations (9) and (10) and introducing the heat 
capacity (Cp = T ?s/~T), the energy equation for a 
thermo-viscoelastic material under large deformations 
is finally expressed as 

• dT(X", t )  - d i v  Q(X" 
pCp dt - , T) + r ( X " , / )  

+Qs(X '), T), (12) 

where the source term Qs(X", T) is given by 

1 T ? S ( X  ''. T) dC(X °, t) 
Qs(X",t) = ~ ? T  : " d t  

(r(x",0 ' ; : £  - @ ].dC!X"=T/ 
a C , e T  e C ' , ]  dt " 

Note that when mechanical parameters do not depend 
on temperature, the source term becomes 

Qs(X °, T) = ~3~ dC,.(X °, T) - " - qSim(X °,l). (13) 
(nC, dt 

3. NUMERICAL MODEL 

The numerical modelling of the thermo-viscoelastic 
problem includes two parts, The first part is the dis- 
crete formulation and its solution for the equations of 
mechanics by a finite element analysis and the second 
part is similar, but focuses on the energy equation. As 
the first part has already been detailed in a previous 
article [16], here we will only deal with the second 
part. 

3.1. lnte,qral./brmulation 
We search for a function T(X °, t) satisfying equa- 

tion (I 2) on the domain V", as well as the boundary 
conditions on S °. As it is an unsteady problem, this 
solution also has to satisfy the initial conditions. To 
build a discrete model by the finite element method, 
we adopt the classical method which introduces a 
polynomial approximation for each sub-domain V~) 
m the integral form I of the weak formulation of the 
problem 

1- E ~l pCp~T~[ dV~ )-[  Q, e6Tdv" 

Here the test functions aT  are selected in the same 
space as that of  the trial functions T(X °, t) and NEL 
represents the total number  of elements which form a 
nonoverlapping covering of the domain V °. 

Boundary conditions. In the boundary integral, the 
expression QN ° dS; ) is flux 42 passing through the 
surface element dS~] in the reference configuration. 
This flux can be mapped to the deformed con- 
figuration where the boundary conditions possess 
physical meaning 

qS"dS"~ ~ = q~ dS~., 

where q~, is the flux passing through element d&. 
which is the image in the present configuration of the 
surface element dS °. It also follows that from equa- 
tion ( I b) we can demonstrate that 

dS~ = x."N°~ ' ' r  TN ° d S  ° 

and linally the relationship between the two fluxes is 

~'.' = , , r V ' ~  ' ~  ' N  (' ~.  

The flux ¢/)~. in the current configuration consists of: 

• a flux with a value imposed on surface S~f: qS~.~ • 
• a convective and/or radiative flux defined on sur- 

face Scm by relation 

¢b~m = - (h+~;a{T+ T , ) ( T e +  T~ ) ) ( T -  T,  ) 

= I ( T ) ( T -  T, ), 

The boundary integral finally has the following 
form : 
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so 6TQN° dS~ 

= f ~srx/N °p '~-TN° q~adS~ o 
Z~ o 

ef  

+ f 6Tf(t)~/N°F-'F-TN°(T - T~) dS°m 
3s o 

em 

where the surface elements dS°r and dS°m are, respec- 
tively, the images of the surface elements dS~f and dScm 
in the present configuration on which the fluxes ~6ef 
and ~b~m are applied. 

3.2. Matrix formulation 
Introducing the finite element approximation into 

the integral form leads to the following matrix form : 

I= [M]{'['}+[K]{T}--{VF} (14) 

where { T} is the vector of temperature values at the 
mesh nodes and { 7 ~} the vector of their time deriva- 
tives. The mass matrix [M], the stiffness matrix [K[ 
and the body force { VF} are obtained by assembling 
elementary matrices and vectors 

N E L  

[M] = ~ [M~]. 

N E L  

[K] = ~ ([g~] + [K~I) 

N E L  

{VF} = ~ ({V~}--{vm}--{V/}),  
e ~ l  

with 

[Me] = Jr? pCp{Ne} (N¢) d V ff 

[K m] = ~o f(T)Js(X °, t){N¢}(N~) dS°~m 
,)Sere" 

{ V~} -=- fv;' {Ne}Qs(X°' T) dV ° 

sf Is v~ } = ° { No } 4~ j s ( ×  °, t) d S g  
ef  

{ V~} -= fsa {NeIf(T) T~Js(X°' t) dS°m. 

The large deformation aspect of the problem enters 
into the stiffness matrix through the conductivity ten- 
sor KL(X °, t) previously defined. It also enters in the 
elementary matrices and vectors through the Jacobian 
Js(X °, t) 

Js(X ° , t) = x/N° (X ° , t)[~-' (X °, t )F-T(x ° , t)N° (X ° , t). 

Note that the matrix I~L(X °, t) and the Jacobian 
Js(X °, t) must be computed at each Gaussian point 
according to the displacement of the element nodes 
resulting from the solution of the equations of 
mechanics [16]. 

The differential equation system (14) results in a 
system of nonlinear algebraic equations by using an 
implicit Eulerian time integration scheme. A Newton- 
Raphson method is used to solve the obtained non- 
linear system of equations. 

4. APPLICATIONS 

In order to validate our approach, we have studied 
a two-layer elastomer-steel test piece subjected to 
a shear force (Fig. 2). The elastomer we use is a 
dimethyl-vinyl-siloxan elastomer from Rh6ne- 
Poulenc which has been vulcanized by peroxide. 
Under the assumption of plane and homogeneous 
deformations, the mechanical problem [equations 
(8)-(10)] has an analytical solution which allows us 
to use it as a benchmark for thermal modelling. 

A sinusoidal displacement is applied to the central 
bar while the outer bars of the test piece are fixed. The 
characteristics of this excitation are : 

• a m p l i t u d e  : A L  = 0 .5e  

• frequency : f =  o/2n = 4.5 Hz. 

The test piece is then put into a thermal enclosure 
with quiescent air at a temperature of 28~C. During 
the tests, a forced convection heat transfer occurs 
between air and the test piece because of the dis- 
placement imposed on the bars. To take this phenom- 
enon into account the average heat transfer coefficient 
h was set at 5 W m 2 K - t  in the numerical model. 

Thermocouples have been inserted into the elas- 
tomer in order to compare the predictions of the 
numerical model with experimental results. These 
thermocouples are positioned in parallel to the bars 
and orthogonal to their displacement direction. This 
prevents mechanical stresses from interfering with the 
measurements. Figure 3 shows on a half cross-section 
the dimensions of the test piece, as well as the position 
of the thermocouples. 

We use type K thermocouples of 0.2 diameter. They 
are calibrated with two thermostatic baths. The first 
bath is maintained at 0°C (cold source), the second 
bath is at a temperature varying between 0 and 100°C 
(hot source). The temperature accuracy of both baths 
is about 0.1 ~C. 

Solution of the mechanical problem--determination of 
the source term 

For the description of the viscoelastic behaviour 
of the elastomer, we have used a rheological model 
proposed by Sidoroff [10, 17, 19] and represented on 
Fig. 4. It is a Poynting-Thomson model extended 
to large deformations and based on the principle of 
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Fig. 2, Two-layer test piece submitted to a shear lorce when displacement is imposed. 
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Fig. 3. Test piece dimensions and position of the thermocouples. 

multiplicative decomposition of the deformations we 
have presented in Section 2.2. 

This model is obtained by the simultaneous appli- 
cation of a spring and a dashpot. The whole system is 
assembled in series with another spring. The domi- 
nance of the hyperelastic behaviour of elastomers 
compared with their viscous behaviour justifies this 
choice. This model favours the instantaneous response 
of the first spring in comparison with the delayed 
response of the whole spring-damping system. The 
deformation energies of the first and second springs 

are given by, respectively, Hart-Smith [20] and Neo- 
hooke [21] laws 

lirst spring-- Hart-Smith law 

p~P~ = c, f exp(c3( l~  - 3)2)dl~ +c2 kn-13 

second spring- Neohooke law 

pttJ2 = ai (l~t --3). 
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Fig. 4. Rheological 
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model describing the elastomer 
behaviour. 

In the previous expressions I] ,  1~ and I~ are the 
invariants of the tensors C¢ and Cv. The parameters 
a~, Cl, c2, c3 and v are determined by experiments in 
dynamic deformations. For a 4.5 Hz frequency and 
an amplitude of the deformation amounting to 50% 
of the elastomer thickness, we obtain 

at = 0 . 1 M P a ,  c~ =0 .34MPa ,  

c ~ = - 0 . 0 6 5 M P a ,  c 3 = 5 ,  v = 0 . 0 5 M P a .  

On the other hand we assume with this model that the 
mechanical behaviour of the elastomer is temperature 
independent. The source term Qs(X °, T) then equals 
to intrinsic dissipation ~bint [see equation (13)]. When 
taking the following function for the energy dissi- 
pation of the dashpot 

~q~ - v~,. 

this source term becomes 

Qs(X °, t) = ~b,,~(X °, t) = v T r ( ~ ) .  

Furthermore, equations (8) and (10) are written as 
[19] 

/~q/ .  8q'~ 

\ 2,o0I i 81~ 

x ((P:CI~P-~PCP))+pCof~ (15) 

'~w' P(~P+ Oq" P(-(P:C)(7+~PC)P P - ~l~ ~/~ 

+ 8~] i ) + v ~ v + q C o f e ~  (16) 
811 J 

where we have set P = C~- t. 
Under the assumption of plane and homogeneous 

deformations one has 

1~= 1 withT-----AL ~ v =  1 
e 

0 0 

1• y ~ y y  

0 . .  

il r iI 0 L 0 0 

where 7-  the relative deformation resulting from vis- 
cous effects, is the unknown of equation (16). These 
matrices help us deduce the following expressions for 
the derivatives of qJ~ and qJ2, which enter relations 
(15) and (16) [161 

0q'~ 
p ~ -  = c~ exp(e3(l] - 3 )  2) = c~ exp(c3(),-Tv) 4) 

p 
~I~ I~ 3 + ( 7 -  7v)2 

~q'2 p ~ = a ~ .  

After solving equation (16) with an Eulerian time 
integration scheme [16, 19], one obtains the evolution 
of the intrinsic dissipation displayed in Fig. 5. The 
excitation expressed by the relative sinusoidal defor- 
mation of the test piece 7 = AL/e has also been dis- 
played in this figure. 

We notice that heat production varies in a sinus- 
oidal way at a frequency which is double that of the 
excitation (9 Hz). This comes from the fact that the 
source term Qs(X °, T) varies with the square of the 
deformation velocity. Furthermore, during the first 
three deformation cycles, the amplitude of the 
dissipation varies and oscillates periodically. This 
phenomenon is explained by the fact that when exert- 
ing a horizontal displacement on the central bar the 
entangled molecular chains are forced to 'unfold' and 
extend in the displacement direction. A periodic hori- 
zontal displacement causes periodic extensions and 
compressions of the molecular chains. This dis- 
placement of the molecular chains enables the material 
to progressively gain some flexibility. Furthermore, 
dissipation is stronger in the direction of the dis- 
placement rather than in the reverse direction. This 
comes from the fact that after forcing the molecular 
chains to extend in a direction, they are forced to 
extend in the reverse direction. Such a phenomenon 
has been observed previously by the authors and is 
known as the Mullins effect [22]. After the fourth 
cycle, the amplitude of the response in dissipation 
is quasi-steady and the heat production can then be 
written as 

Qs(X °, T) = Qs(t) = 176 500(1 +sin(18xt)) + 7400. 

(17) 

4.1. Numerical modellin9 of the thermal problem 
The solution of the energy equation (12) associated 

with the shearing test can be carried out on half of the 
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Fig. 6. Computational mesh and boundar~ conditions for the test-piece. 

cross-section of the test-piece because of symmetry. 
The numerical  model described in Section 3 was 
implemented with a variable source term such as the 
one displayed in Fig. 5 for the first three cycles and 
then equat ion (17) was used. The mesh, shown in Fig. 
6, is made up of  165 isoparametr ic  Q4 elements of  
Lagrangian type, 55 linear elements L2 and contains  
284 nodes. The 69 Q4 elements in dark  represent the 
steel bars and the other  96 represent the elastomer. A 
zero flux condi t ion is applied on the symmetry axis 
and a convective heat  t ransfer  condi t ion is imposed 
on the other  mesh boundaries ,  with an average heat 
t ransfer  coefficient h of  5 W m- 2 K ~ and an ambient  
temperature  T~ of  28 C. 

The values of  thermophysical  properties of  the 
materials are:  for steel: ) . = 4 5  W m ~ K ~ and 
pCp=3.5× ] 0 6 J  m 3 K 1 and for the e las tomer:  
2 = 0 . 1 2 7  W m  I K I a n d p C p = l . 3 3 × 1 0 6 J m  
K 

The numerical  computa t ion  was carried out  for 
660 s, namely 3000 cycles. Each cycle is divided 
into 20 time steps of0.0111 s. 

Figure 7 compares  the evolut ion of  the numerical  
results with the experimental  ones in the centre of  the 
elastomer. 

4.2. kLx-planation o/ lhe  obtained results 
We notice that  the tempera ture  in the centre 

increases ra ther  rapidly at the beginning. Indeed, up 
to the 110th cycle, the evolution is a lmost  l inear with 
a 0.08 C increase per cycle. It then evolves more slowly 
and tends asymptotical ly towards a tempera ture  of  
about  70'C. The total increase in tempera ture  
amounts  to 42 C. This increase would obviously be 
larger if the ampli tude or frequency of  the excitation 
signal were increased. 

The curves displayed in Fig. 7 show a large differ- 
ence between the results of  the numerical  model and 
the experimental  ones. Therefore,  the assumpt ion  that  
thermo-mechanical  parameters  and consequent ly the 
source term do not  depend on tempera ture  must  be 
questioned. When  shearing forces generate a large 
stress friction in the molecular  chains,  this assumpt ion 
is only valid as a first approximat ion.  Thus, when the 
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real behaviour of  the material needs to be described 
more precisely, it is necessary to consider that the 
heat production depends not only on the mechanical 
forcing, but also on the temperature, even though it 
is far from the glass transition. 

To assess this dependence, the experimental tem- 
perature measurements have been used to determine 
the evolution of  the source term with respect to tem- 
perature by utilizing an inverse method of  Beck type 
[23]. The detailed calculations and computat ions are 
presented in B~rardi's thesis [24]. The obtained results 
represented on Fig. 8 show that this evolution follows 
a law of  Arrhenius type 

Qs(T)=O.7(1-exp(-15670 ~'] (T-- Ti)3°7Jf (18) 

where 17 is the initial temperature of  the elastomer. 

This curve shows that the heat production within 
the elastomer is at first constant, then decreases with 
respect to temperature. A softening phenomenon of 
the material can explain this result. Furthermore,  in 
the initial cycles of  forcing, the movement  of  the 
entangled molecular chains produced an additional 
energy dissipation. 

The function in equation (18) was implemented in 
our numerical model. Figure 9 compares the evolution 
with respect to time of  the temperatures resulting from 
the numerical computat ion with the experimental 
values. The figure shows a good agreement between 
the results. The difference between the numerical and 
experimental results can be explained by a lack of  
accuracy when determining the heat transfer 
coefficient. The comparison of  the numerical results 
with the experimental ones given by the other 
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thermocouples is totally similar to the comparison 
presented on Fig. 9. It appears that the evolution 
of the source term according to temperature is well 
represented by equation (18). 

Figure 10 shows the evolution of the temperature 
field on line AB (see Fig. 6) as a function of the 
number of cycles. 

As previously, we can note that this temperature 
field evolves rapidly during the initial forcing cycles. 
This generates a rather large temperature gradient in 
the elastomer. Besides, the flux exchanged by con- 
vection around the test piece imposes a temperature 
maximum at first situated in the centre of the elas- 

tomer and then moves towards the symmetry axis of 
the test piece. This phenomenon is illustrated in Fig. 
11 through the use of isotherms within the test piece 
at various time intervals. 

The appearing hot zone can occur in many indus- 
trial applications related to more complex composite 
structures. On the other hand, this phenomenon will 
be more important when the deformation amplitude 
and the excitation frequency are higher. This will 
enhance the damaging phenomena strongly related to 
the appearance of hot spots. This could also involve 
a shorter lifetime of parts of the structures [25, 26]. 

Finally, the rheological model used cannot give 
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results close enough to reality, since it assumes that 
the thermo-mechanical  parameters and the source 
term are temperature independent. It is therefore 
necessary to develop other models, with the results 
obtained through inverse method. These models 
should consider the behaviour dependence of  the 
material with respect to temperature. 

CONCLUSION 

In this article we have presented an approach to 
obtain equations for a thermo-viscoelastic coupling 
with large deformations. The equations are written 
in Lagrangian form in the reference configuration. 
Among them, the energy equation contains a source 
term depending upon the viscous dissipation in the 
mechanical behaviour model. Assuming that this 
source term is temperature independent, a solution of  
this equation via finite element analysis was carried 
out for a two-layer test piece subjected to a plane and 
homogeneous shearing force. 

In order to validate the results from the rheological 
model, an experimental assembling was implemented. 
In this assembling, the thermocouples enable us to 
measure the rise of  temperature at various points of  
the elastomer. The experimental results are then com- 
pared with the results of  the numerical model. They 
show that the assumption of  a temperature inde- 
pendent source term can only be a first approximation. 
When a more accurate description of  the real behav- 
iour of  the material is required, it then becomes necess- 
ary to consider the variation of  the source term with 
temperature, even far from the glass transition tern- 

perature. An expression for the source term variation 
with temperature was determined by an inverse 
method. The numerical results obtained with this 
function agree much better with the experimental 
results. They emphasize that the material becomes 
softer during the initial cycles of  the response in heat 
production when subjected to a harmonic mechanical 
excitation of  amplitude amounting to 50% of the test 
piece thickness and of  frequency 4.5 Hz. This com- 
putation has also demonstrated the existence of  a 
strong gradient within the elastomer which causes the 
formation of  a hot  zone within it. This zone will be 
crucial in industrial applications as it increases the 
damaging phenomena. 

The obtained results should help identify a rheo- 
logical model whose coefficients are temperature 
dependent. 
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